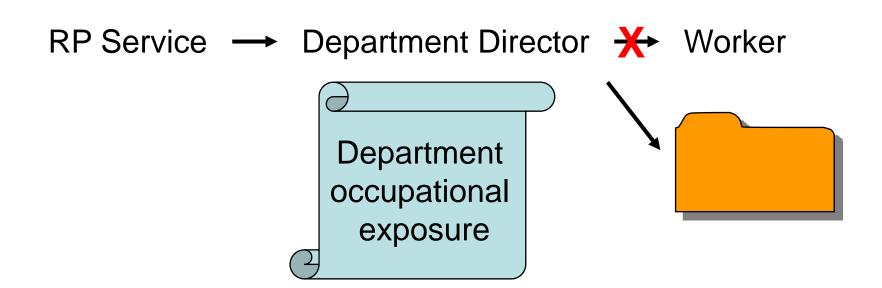
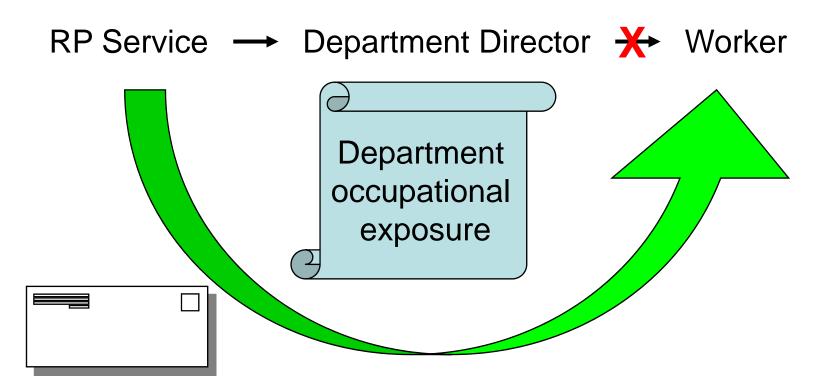
International Workshop on Optimization of Radiation Protection of Medical Staff


Round table Lessons learned to optimize occupational radiation protection

Josep M Martí-Climent

Clínica Universidad de Navarra. Pamplona, Spain


To be or not to be aware of the own occupational exposures?

- Theoretically: everybody
- Practically: some people

How should awareness be improved?

- Occupational exposures
- Underlying causes of exposures and how to control

Dose reference levels for groups

People beyond the reference Hp(10) level

	<u> </u>						
	Reference Dose						
PET Lab	0.40						
MN	0.20						

Why these values?

Dose reference levels for groups

People beyond the reference Hp(10) level

	Reference Dose	User	1	2	3	4	5	6	7	8	9	10	11	12
PET Lab	0.40	Lab-1			0.78		1.35	0.41	0.49		0.47	0.83	0.68	
		Lab-2					0.45		0.81		0.56		0.97	
		GMP-1							0.52					
		GMP-2								0.99				
		Mainten												
		Staff												
MN	0.20	Nurse-1			0.28	0.3	0.21	0.39					0.23	
		Nurse-2	0.29	0.45							0.23	0.23		
		Nurse-2	0.21				0.28		0.21					

Investigate: High value

Exceeding frequently

Reasons for individual dose elevation

- Contamination
- Workload increased
- Activity carefully loaded in a syringe
- Intervention in a synthesis module
- Cyclotron maintenance/intervention

Setting up a new radiopharmaceutical

Were they aware of the risk?

Activities that need attention

- potential high dose
- doses are not well known

- Cyclotron intervention
- PET Radiopharmaceutical production
- Radiomethabolic treatments: new or not very frequent

Our experience with the ORAMED project

- Good practice
 - technicians /nurses rotation
 - Massive shielding

Maximum/measured dose ≈ 3

How to improve RP?

- Training
- Standardization of minor procedures

- Active dosemeters in PET
 - Dose vs Dose rate + Alarm

International Workshop on Optimization of Radiation Protection of Medical Staff

Round table Lessons learned to optimize occupational radiation protection

Josep M Martí-Climent

Clínica Universidad de Navarra. Pamplona, Spain